2015 Toronto Blue Jays’ Hitters: A PITCHf/x Preview

Written by: Doug Duffy

With the Blue Jays flying north and spring training squarely in the rear-view mirror, Torontonians can leave behind their masochistic winter ritual, watching the Maples Leafs, in favor of their spring ritual, asking “Is the dome open yet?”. Incidentally, in the year 2015, there’s a twitter account for that. Along with the arrival of Opening Day has come the annual barrage of previews, some more quantitative than others. My personal favorite was the series of previews published on Grantland for each of baseball’s divisions, nicely melding projection systems, depth charts and win projections with more qualitative subjects like strengths/weaknesses and storylines. I, however, chose to take the opportunity to dig into the Pitch f/x database for the first time to see what it can tell us about the 2015 Blue Jays hitters, especially the new arrivals. Hopefully, I’ll get around to performing something similar for the pitching side of things soon.

Read more 2015 Toronto Blue Jays’ Hitters: A PITCHf/x Preview

Using Projection Models for 2015 Fantasy Baseball Drafts

Written by: Doug Duffy

If you’ve ever participated in a fantasy draft of any kind, you’re familiar with the concept of projections. Projections, they’re (almost) as simple as they sound. What do you project a given player to accomplish based on his past accomplishments? Projections are not restricted to the realm of fantasy sports however; teams utilize projections as well, to assist them in player valuation. In this post I’ll explain how you can use projections for player valuation for your own fantasy baseball league, using a model based either on Standing Points Gained above replacement, or Fantasy Points above replacement, depending upon the scoring system of the league [1]. In addition, I’ll be posting the R code used to perform the models, as well as Draft Cheat Sheets containing relevant draft info from many of the sources we searched.

5x5Roto10TeamDraftsheet

5x5Roto12TeamDraftsheet

Points10TeamDraftsheet

Points12TeamDraftsheet

Special Request (AL-only 4×4 10 Team no R or K) : 4x4ALonly10Team

Update (3/21/2015) : The projection database and draftsheets have all been updated, and the R code used to calculate TOTspgAR and FPtsAR has been posted. Enjoy.

Read more Using Projection Models for 2015 Fantasy Baseball Drafts

Sports Industry Conference 2015 & Next Meeting

Earlier today the UTSPAN team had the pleasure of attending the 2015 Sports Industry Conference hosted by the University of Toronto Sports and Business Association (UTSB). UTSB were kind enough to let us set up a small booth with a poster to show off a bit of our work and extend an invitation to all attendees. The conference was a big success and we would like to thank UTSB for hosting an extremely well-organized event with top class panels.

We would like to announce that our next meeting will be held on Monday 16 March 2015 at 7PM in room 3008 of the Bahen Centre for Information Technology (40 St George Street). Join us to learn more about the group and what we hope to achieve in the coming months! We will also be hoping to discuss some possibilities for the upcoming UTSPAN Data Hack-a-thon!

A big thank you to everyone who stopped by the booth to chat with us! If you have any questions feel free to reach out to us on Twitter or by email at: sportsanalytics@utoronto.ca

Introduction to Analytics in… Soccer

Written by: Valentin Stolbunov

Soccer, or football, or footy, or “the beautiful game” is the world’s most popular sport. When trying to prove this to a fan of North American sports, a soccer fan’s best weapon is usually global TV audience numbers. The 2014 Super Bowl had an audience of about 160 million viewers worldwide. The same year, the FIFA World Cup final had a global audience of about 1 billion. So, yeah, soccer is popular.

The recent sports analytics movement, however, didn’t originate from the world’s most popular sport. Most would agree it started with baseball and then spread to other North American sports – hockey, basketball, and football (the one with helmets). Compared to these sports, the use of advanced or “fancy” stats in soccer is still in the early stages.

Read more Introduction to Analytics in… Soccer

Introduction to Analytics in… Baseball

Written by: Kurtis Judd

Whether you’re simply interested in following home run races, or using programming languages to predict next year’s MVP, it’s hard to argue that baseball isn’t a statistics driven sport. Every event in the game is so discrete, that it’s a statistician’s dream of clean, easy to work with data.

Read more Introduction to Analytics in… Baseball

UTSPAN Forum

We have set up a free forum for UTSPAN on ProBoards! A link has also been added to the menu bar in the top right of our webpage.

This will serve as our primary project work platform as it allows us to share ideas, images, code, links, and just about anything else. The forum will be visible publicly and there are no restrictions on membership. Sign up and get started!

utspan.proboards.com

Meeting: Project Discussion

We will be holding our second meeting on Monday 26 January 2015 at 7PM in BA2135.

This meeting will have a number of short presentations from the smaller project exploration teams. We aim to decide on the focus of the handful of projects which will ultimately be our work for the next couple of months.

New members are always welcome! Come out and see what UTSPAN is planning to do!

Meeting: General Information

We will be holding a general information meeting for anyone interested in joining the group or just hearing more about what we plan to do!

  • Monday 12 January 2015
  • 7PM
  • Bahen Centre for Information Technology (40 St George Street)
  • Room #2135

The meeting will likely cover:

  • An introduction from the executives
  • A quick introduction to the field of sports analytics
  • An overview of how the group will operate
  • A discussion of the milestones we are currently looking at

This meeting will be followed by a more technical meeting in the coming weeks.